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1. Introduction
Due to advanced technology, competitive markets, and consumer 

demand, most products are highly reliable as these products may work 
properly for years or even decades. To obtain enough information 
about the reliability of these products, they should be exposed to higher 
stresses than normal conditions. Accelerated life test (ALT) is design 
to overcome the situation. The ALT is more efficient with low cost 
than the classical reliability testing. However, sometimes the accelera-
tion factor cannot be easily obtained in many situations. To overcome 
this difficulty, partially accelerated life test (PALT) was proposed. In 
practice, the constant-stress accelerated life test (CSALT) is one of 
the most common types in PALT. In CSPALT, the total components 
are divided into two groups (g1 and g2). Each unit in the two groups 
is run at constant stress level until it fails. The CSALT model has 
many applications in various fields. For example, this model comes 
up in engineering studies such as failure times of electrical insulation, 

oil breakdown times of insulating fluid and fatigue failure of aircraft 
structures.  Extensive research work has been done on PALT associ-
ated with different distributions. Lone and Rahman [20] investigated 
the estimation of the PALT for competing risk model. Zheng and Fang 
[28] considered exact confidence intervals for the acceleration factor 
under CSPALT. Bing and Zhong-zhan [5] used the maximum likeli-
hood method in order to obtain the estimates of the CSPALT param-
eters with Lomax distribution. Lin et al. [19] addressed the statisti-
cal inferences for CSPALT model under log-location-scale lifetime 
distributions. Lone et al. [21] employed the Bayesian approach to 
predict CSPALT based on censored data. Maiti and Kayal [22] inves-
tigated the estimation of stress-strength parameters using the extended 
Chen distribution. Yang and Wang [26] considered the characteristics 
about insulation damage under the ALTs. Yazgan et al. [27] studied 
the fuzzy reliability model using the weighted exponential distribu-
tion and Asadi et al. [3] studied the statistical inferences for CSPALT 

Highlights Abstract

The accelerated life testing is the key methodology of evaluating product 
reliability rapidly. This paper presents statistical inference of Gompertz 
distribution based on unified hybrid censored data under constant-stress 
partially accelerated life test (CSPALT) model. We apply the stochastic 
expectation-maximization algorithm to estimate the CSPALT parameters 
and to reduce computational complexity. It is shown that the maximum 
likelihood estimates exist uniquely. Asymptotic confidence intervals and 
confidence intervals using bootstrap-p and bootstrap-t methods are con-
structed. Moreover the maximum product of spacing (MPS) and maxi-
mum a posteriori (MAP) estimates of the model parameters and acceler-
ated factor are discussed. The performances of the various estimators of 
the CSPALT parameters are compared through the simulation study. In 
summary, the MAP estimates perform superior than MLEs (or MPSs) with 
respect to the smallest MSE values.

Statistical inference methods are developed for constant-stress • 
partially accelerated life testing under unified hybrid censoring 
scheme.

Component lifetimes are assumed to follow Gompertz distribu-• 
tions.

Different point estimation methods are discussed using the classical • 
and Bayesian approaches.

The existence of the maximum likelihood estimate of the param-• 
eters of the proposed model is proved.

 Asymptotic and Bootstrap confidence intervals are given for model • 
parameters and accelerated factor.

Numerical studies show that the MAP estimates perform superior • 
than the MLEs (or MPSs) with respect to the smallest MSE val-
ues.

Estimation procedures for partially accelerated life test model  
based on unified hybrid censored sample from the Gompertz distribution
Showkat Ahmad Lone a, Hanieh Panahi b,*
a Saudi Electronic University, Department of Basic Sciences, College of Science and Theoretical Studies, (Jeddah-M), Riyadh11673, Kingdom of Saudi Arabia 

b Department of Mathematics and Statistics, Lahijan branch, Islamic Azad University, Lahijan, Iran

Panahi H, Lone SA. Estimation procedures for partially accelerated life test model based on unified hybrid censored sample from the 
Gompertz distribution. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24 (3): 427–436, http://doi.org/10.17531/
ein.2022.3.4.

Article citation info:

constant-stress; maximum a posteriori; maximum product of spacing; stochastic EM algo-
rithm; unified hybrid censoring.

Keywords

This is an open access article under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/)

H. Panahi (ORCID: 0000-0003-2431-1463): panahi@liau.ac.ir, SA. Lone (ORCID: 0000-0001-7149-3314):   
s.lone@seu.edu.sa



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 24, No. 3, 2022428

model under Gompertz distribution. Moreover, censoring is a frequent 
occurrence and strategy in reliability tests and ALT models, either for 
unavoidable reasons or simply to save experimental time and expense. 
Type-I and Type-II censoring schemes represent the fundamental cen-
soring schemes ([1,2, 6,10, 13,17, 25]), which allow an experiment 
to be terminated at a specified time or after a predetermined number 
of individuals have failed, respectively. The hybrid censoring scheme 
is a combination of the Type-I and Type-II censored schemes [9]. 
Chandrasekar et al. [7] improved the hybrid censored schemes of cen-
sored sampling by introducing two extensions of this type, named as 
generalized Type-I hybrid censoring (GIHC) and generalized Type-II 
hybrid censoring (GIIHC) schemes. Although the GIHC and GIIHC 
schemes were proposed to avoid the disadvantages of type-I and type-
II HCSs, these two have some drawbacks too. In case of the GIHC 
scheme, the experimenter may not have the mth failure due to the 
prefixed time. On the other hand, for the GIIHC scheme, there is a 
possibility of getting effective sample size (here, m) zero or may be 
very small. To overcome such disadvantages, Type-I and Type-II uni-
fied hybrid (UH) censoring scheme were proposed by Balakrishnan 
et al. [4]. In UH censoring scheme, let the number of items used in a 
life testing experiment be n. In this scheme, { }, 0,..., ;  k r n k r n∈ < <  
and 1 2 (0, )T T< ∈ ∞ are decided before hand by the experimenter. If 
the thk failure occurs before T1, then the experiment will be stopped 
at { }: 1 2min  max( , ),  r nX T T ; if the thk failure occurs between T1 and 
T2, then the experiment will be terminated at { }: 2min  ,  r nX T and if 
the thk failure occurs after T2, then the experiment will be stopped at 

kY (Figure 1). The UH censoring scheme has been studied for many 
lifetime distributions. For instance, [15] studied Bayesian prediction 
from the exponentiated Rayleigh distribution. [16] discussed different 
estimation methods for the half logistic parameter .  [18] analyzed 
the UH censored model with Rayleigh distribution. [23] extensively 
offered an analysis of Burr type III distribution, then presented the 
application of the considered model in the fracture toughness data. 

Therefore, under the UH censoring scheme, we have the six cases 
which are presented in Table 1. To the best of the authors’ knowledge, 
there is not any work related to estimation of CSPALT model based on 
Gompertz distribution under UH censored sample. 

So, our objective in this study is the development of inference tech-
niques for CSPALT model based on Gompertz distribution under UH 
censored sample. We suppose that the lifetime X1 of an item tested for 
g1 at use conditions has the following probability density function 
(PDF), cumulative distribution function (CDF), survival and hazard 
function are respectively given by:

f x x e xx
1 1 0 0 0( ; , ) exp ( ) ; , ,α γ γ α

γ
α

α γα= − −





> > >     , (1)

 F x e xx
1 1 1 0 0 0( ; , ) exp ( ) ; , ,α γ

γ
α

α γα= − − −





> > >     , (2)

and:

 h t e tt
1 0 0 0( ; , ) ; , ,α γ γ α γα= > > >    . (3)

By using the condition h t h t2 1( ; , ) ( ; , )α γ λ α γ= , the PDF, CDF 
and hazard functions of g2 (accelerated condition) are:

f x x e xx
2 1 0 0 0 1( ; , , ) exp ( ) ; , , ,α γ λ γλ α

γλ
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α γ λα= − −





> > > >     ,

(4)

F x e xx
2 1 1 0 0 0( ; , , ) exp ( ) ; , ,α γ λ

γλ
α

α γα= − − −





> > >      (5)

and:

 2( ; , , ) ;   0,  0,  0th t e tαα γ λ γλ α γ= > > > . (6)

Motivated by these above reasons and statements, we consider 
the CSPALT model under UHCS, and make statistical inference 
based on classical and Bayesian approaches. We evaluate the 
CSPALT parameters using maximum likelihood method. It is 
observed that the MLEs do not exist in closed form due to the 
complicated structure of the likelihood function. Therefore, it 
becomes difficult to evaluate accurate estimates, and the process 
of obtaining MLEs includes heavy computations. It looks like 

an alternative to apply other methods, such as EM and SEM 
algorithms. Further, the implementation of the EM algorithm 

Table 1. The cases in which a test under UH censoring will be completed

Cases UH censoring Terminated 
time

Number of failure 
units

I : : 1 20  k n r nX X T T< < < < 1T 1d

II : 1 : 20 k n r nX T X T< < < < :r nX r

III : 1 2 : 0 k n r nX T T X< < < < 2T 2d

IV 1 : : 2 0 k n r nT X X T< < < < :r nX r

V 1 : 2 : 0 k n r nT X T X< < < < 2T 2d

VI 1 2 : : 0 k n r nT T X X< < < < :k nX k

Fig. 1.Diagram of the UHCS
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still requires the numerical techniques. So we employ the stochastic 
expectation-maximization (SEM) algorithm to reduce complexity and 
simplify computing.  We also, considered the maximum product of 
spacing (MPS) method as another frequentist estimation approach for 
estimation of the CSPALT parameters. Based on Bayesian viewpoint, 
we also apply the maximum a posteriori (MAP) method to obtain the 
unknown parameters. In the sequel, different confidence intervals are 
also constructed using maximum likelihood estimates. It is organized 
as follows for the remainder of the article. In Section 2, we study 
the model and discuss the point estimation via maximum likelihood 
method. We also prove the existence and uniqueness of the MLEs.  
The SEM algorithm is proposed in Section 3. Thereafter, the point 
estimation using MPS method is investigated in Section 4. In Sec-
tion 5, the MAP estimates for the CSPALT parameters are proposed 
based on the UHCS.  Different confidence interval methods such as 
approximate, Boot-p and Boot-t confidence intervals are discussed 
in Section 6. In Section 7, a simulation study is conducted to com-
pare the proposed procedures. Finally, in Section 8, the concluding 
remarks are added.

2. Maximum Likelihood Estimates for CSPALT Based 
On UH Censoring 

In this Section, we estimate the model parameters and accelerated 
factor via maximum likelihood method. By combining two groups 
(g1 and g2), the likelihood function of the parameters α, γ and λ is 
given by:

 L data x e ej
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Also, , 1,2; 1,...,ij iX i j n= = are the units for the items obtained 
from Gompertz distribution, where 1 1; 1,...,jX j n= is the unit in nor-
mal condition and 2 2; 1,...,jX j n= is the lifetime in accelerated condi-
tion. Thus, the log-likelihood function (LLF) can be given as:
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The MLEs of α, γ and λ can be evaluated by maximizing the func-
tion given in (8) with respect to unknown parameters. Taking partial 
derivatives of Equation (8) with respect to α, γ and λ, we have:
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and:
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To obtain the MLEs of  α, γ and λ, the nonlinear system of equations 
given by (9), (10) and (11) are to be solved numerically using a non-
linear optimization algorithm. In the following theorem, it is shown 
that the MLEs of the parameters α, γ and λ exist and also unique.

Theorem 3.1. The MLEs of the parameters α, γ and λ for 
( , , ) ( , ) ( , ) ( , )α γ λ ∈ ∞ × ∞ × ∞0 0 1  exist and also unique.

Proof: See Appendix A.
For more discussion about the existence and uniqueness of maxi-

mum likelihood estimates,  we propose to consider the contour and 
3D plot (Figure 2) using the following steps:

Generate a sample size 1. n1 from the Gompertz distribution 
based on the group 1 (X1).
Consider the unified hybrid censoring scheme.2. 
Estimate parameters 3. α and γ using the maximum likelihood 
method.
Use the “4. rsm” package in R software to present the contour 
and 3D profile plot. The Figure indicates that the MLEs of the 
α and γ are exist and are also unique. 

We also show the existence and uniqueness of the MLEs using the 
following Steps:

Generate a sample size (1. n=50) from the Gopertz distribution.
Consider the censoring scheme, 2. r=40, k=15, T1=0.6, T2=1.2.

Fig. 2. The contour and 3D profile plot for log-likelihood function
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Plot ∂3. L(α,β | data) / ∂ α = 0 and ∂L(α,β | data) / ∂γ = 0 in Figure 3.
Plot the profile loglikelihood function 4. l(α,γ̂ | data) and 
l(α̂,γ | data) in Figures 4 and 5 respectively.

From Figure 3, we can observe that there exists one intersection 
point (1.3, 0.6). Also based on Figures 4 and 5, we observed that the 
intersection point maximize the LLF of α and γ . Consequently, we 
conclude that the maximum likelihood estimates of the α and γ exist 
and also unique.

3. Stochastic EM Algorithm
In this Section, we consider the SEM algorithm by using the data 
obtained from UH censoring scheme as a missing data (see, Panahi 
and Asadi [24]). The missing values in this case are the lifetimes 
of the censored units. Denote the unobserved censored data by

11 2, ,, ; 1,2
ii i n DZ Z Z i− = . Combining the observed and missing data, 

we obtain the complete data. Based on the complete data (W), the 
LLF of the complete sample is taken as follows:
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At the E-step of the EM algorithm, we should evaluate these 
conditional expectations 1 1 1( )j jE Z Z s> , 2 2 2( )j jE Z Z s> , 

1
1 1( 1 )jZ

jE e Z sα − >  and 2
2 2( 1 )jZ

jE e Z sα − > which are intrac-
table and complex. Based on the SEM algorithm, the E-step of EM 
algorithm has been replaced by a stochastic step and it can be ex-
ecuted by simulation. Thus, we apply SEM algorithm to approximate 
proposed conditional expectations by using the data obtained from 
UH censoring as a missing data problem. The details of the SEM steps 
are:

Generate the missing samples I ;  1,2ijZ i =   whose conditional di-
stribution function is given by:
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Here, the conditional expectations can be approximated as:
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22 2 2 )( j jz z sζ >  respectively. 

In III tht  iteration, obtain the estimation of α, γ and λ as ˆ ˆ,  k kα γ
and ˆkλ . 

Repeat steps I-III, t times. IV 

The SEM estimates ofV  α, γ and λ can be evaluated as:
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where B is burn-in period.

4. Maximum Product of Spacing
The method of the MPS was introduced by Cheng and Amin [8] as 

an alternative to the method of maximum likelihood. The MPS meth-
od performs better than the MLEs in the case of small samples for 
heavy tailed or skewed distributions.  The MPS estimates are evaluat-
ed by selecting the parameter values that maximize the product of the 
distances between the values of the distribution function at adjacent 
ordered points. Based on UH censored sample and Gompertz distribu-
tion, the maximum product function of PALT is given by:

Fig. 3. The plot of the MLE’s of the parameters

Fig. 4. The plot of ,( ˆ )L α γ

Fig. 3. The plot of  ˆ( ),L α γ
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Using Equations (1), (2), (4) and (5), the equation (13) can be writ-
ten as:
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the natural logarithm of Equation (14) is given by:
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The MPS estimators of α, γ and λ can be computed by differentiat-
ing (15) with respect to α, γ and λ and equating them to zero. We con-
sider the numerical method to get the MPS estimates of α, γ and λ .

5. Maximum a Posteriori (MAP) Estimation
In contrast to traditional frequentist methods, the Bayesian ap-

proaches take advantage of available data information and incorpo-
rate prior information of parameters, thereby attracting much atten-
tion in statistical inference. The MAP method can be applied to obtain 
point estimates with a Bayesian flavor. The MAP estimate indicates 
the mode of the posterior distribution. In this Section, we explore the 
MAP estimates of the unknown parameters of CSPALT under UHCS. 
The MAP estimates are much faster to evaluate than Bayesian esti-
mates, as they do not require the estimation of integrals [11,14]. The 
MAP estimator can be written as:
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To obtain ˆMAPα , ˆMAPγ and ˆ
MAPλ , differentiate (17) with respect 

to α, γ and λ respectively and then equating to zero, we have:
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It is observed that Equations (18)-(20), can not be solved explic-
itly. So, numerical computations like Newton-Raphson algorithm are 
used to evaluate ˆMAPα , ˆMAPγ and ˆ

MAPλ . Moreover, we can use the 
“nleqslv” package in R software for the computation of MAP esti-
mates of the parameters.

6. Confidence Intervals (CIs)

6.1. Asymptotic CI
Here, we discussed the construction of asymptotic confidence inter-

vals using the concept of observed Fisher information matrix (FIM). 
The FIM of ( , , )θ α β γ=  is given by:
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Since maximum likelihood estimator has asymptotic normal-
ity property under certain regularity conditions, the estimator 

( , , )θ α γ λ=  has asymptotic distribution 1ˆ (0, ( ))N Iθ θ θ−− → . Also, 
1( )I θ−  is the variance-covariance matrix. Therefore, the 100(1 )%τ−  

asymptotic confidence interval (ACI) of ( , , )θ α γ λ=  is constructed 
as:

 θ α θ ατ τ− +( )z var z var/ 2 / 2( ) ( ),ˆ ˆˆ ˆ , (21)

where, / 2zτ  is the upper ( / 2)thτ quantile of (0,1)N . Also, the cover-
age probability (CP) of ( , , )θ α γ λ= is given by:

 
ˆ

ˆˆ
CP z=

−
≤











θ θ
θ τvar( ) /2 . 

6.2. Bootstrap CIs
In this Section, we use two bootstrap methods [12, 26], which is 

simpler than ACI method.

6.2.1. Parametric Bootstrap-p CI

Based on the UH censored sample, compute the MLE 1) ˆˆ ,  α λ  
and γ̂  of ,  α λ  and γ  respectively.
Generate random samples from two independent Gompertz 2) 
distributions of sizes 1n and 2n , respectively. Then, generate 
a bootstrap unified hybrid censored sample. 

Compute bootstrap estimates of 3) ˆˆ ,  α λ  and γ̂  say, * *ˆˆ ,  α λ  and 
*γ̂ .

Repeat Steps 2-3 B times and obtain B bootstrap samples.4) 

Arrange all 5) * *ˆˆ ,  α λ  and *γ̂  in ascending order and denote
[1] [2] [ ]* * *ˆ ˆ ˆ,  ,..., ; 1,2,3

B
k k k kξ ξ ξ =  , where, * *

1ξ α= , * *
2ξ β= and 

* *
3 .ξ γ=

Then, the 6) 100(1 )%τ−  Boot-p confidence interval for ,  α λ  
and γ are given by:

α ατ τ*[ ] *[ ]/ ( / ),B B2 1 2−( )ˆ ˆ , λ λτ τ*[ ] *[ ]/ ( / ),B B2 1 2−( )ˆˆ  and γ γτ τ*[ ] *[ ]/ ( / ),B B2 1 2−( )ˆˆ . 

(22)
respectively.

6.2.2. Parametric Bootstrap-t CI
Repeat the Steps 1 to 3 of the Boot-p method.1) 
Compute the t-statistic for parameters as:2) 

*
*

1 *

ˆ ˆ

ˆ( )
T

Var

α α

α

−
=3) , 

*
*
2 *

ˆ ˆ

ˆ( )
T

Var

λ λ

λ

−
=  and 

*
*
3 *

ˆ ˆ

ˆ( )
T

Var

γ γ

γ

−
= .

Repeat Steps 2-4 B times and obtain 4) 
*(1) *(2) *( ), ,..., ; 1,2,3B
k k kT T T k = . 

Arrange 5) *(1) *(2) *( ), ,..., ; 1,2,3B
k k kT T T k = in ascending order and 

denote *[1] *[2] *[ ], ,..., ;  1,2,3B
k k kT T T k = .

Then, the 6) 100(1 )%τ−  Boot-t confidence interval for ,  α λ  
and γ  are given by:

 
α α α ατ τ− −( )−T Var T VarB B

1 1
1 2 2*[ ] *[ ]( / ) ( / )( ), ( )  ,  

 λ λ λ λτ τ− −( )−T Var T VarB B
1 1

1 2 2*[ ] *[ ]( / ) ( / )( ), ( ) ,

 
γ γ γ γτ τ− −( )−T Var T VarB B

1 1
1 2 2*[ ] *[ ]( / ) ( / )( ), ( ) .

 (23)
respectively.

7. Simulation Studies
Since all methods mentioned above cannot be compared theoreti-

cally, numerical simulation studies are carried out to evaluate their 
performance. We compare the performance of ML, MPS and MAP 
estimators in terms of the mean square errors (MSEs) under differ-
ent UH censoring scheme (different values of r, k, T1, T2). We con-
sider various combinations of ( , , )n r k as (40,20,10),(40,20,16),
(40,30,10),(40,30,16) . The predetermined termination times 1 2( , )T T
are also taken as (0.2,0.5),(0.2,1.0), (0.7,0.5) . To run the experiment 
according to a UH  censored sampling from the CSPALT model, we 
propose the following algorithm:

Step 1: Set the parameter values of ,  α λ and γ .
Step 2: Carried out a unified hybrid censored sample by choosing 

the values of 1n , 2n , 1r , 2r , 1k , 2k , 11T , 12T , 21T  and 22T . 
Step 3: Generated unified hybrid censored samples from 

( , )Gompertz α γ and  ( , )Gompertz α γλ by inverting the CDFs in (2) 
and (5) respectively. Under unified hybrid censoring scheme, the sam-
ple data will consists of one of the following cases such as:

If • : : 1 20 ;  1,2,  
i i i iik n ir n i iX X T T i< < < < = the experiment stops at 

1iT and the number of failure units is 1id , that is Case I.

If • : 1 : 20 ;  1,2,  
i i i iik n i ir n iX T X T i< < < < =  the experiment stops at 

:i iir nX and the number of failure units is ir , that is Case II.

If • : 1 2 : 0 ;  1,2,  
i i i iik n i i ir nX T T X i< < < < =  the experiment stops 

at 2iT and the number of failure units is 2id , that is Case III.

If • 1 : : 2 0 ;  1,2,  
i i i ii ik n ir n iT X X T i< < < < =  the experiment stops 

at :i iir nX and the number of failure units is ir , that is Case IV.

If • 1 : 2 : 0 ;  1,2,  
i i i ii ik n i ir nT X T X i< < < < =  the experiment stops 

at 2iT and the number of failure units is 2id , that is Case V.

If • 1 2 : : 0 ;  1,2,  
i i i ii i ik n ir nT T X X i< < < < =  the experiment stops 

at :i iik nX and the number of failure units is ik , that is Case VI.
For each sample, the MLEs of CSPALT model parameters are ob-• 
tained using the stochastic EM algorithm. 
Different confidence intervals are constructed, through asymptotic • 
properties of the MLEs and the Bootstrap methods. We compared 
the interval estimates using the interval lengths and the coverage 
probabilities (CP).
The maximum product of spacing (MPS) and maximum a poste-• 
riori (MAP) estimates of the model parameters and accelerated 
factor are also computed. 
The above steps were repeated 10• 4 times for different sample sizes 
and different UH censoring schemes. The performance of various 
point and interval estimates are obtained in terms of the following 
criteria quantities:

ˆˆˆˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ
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Mean square error (MSE) of the point estimate•  ˆ ˆˆ ˆ( , , )θ α γ λ= , 

which is calculated by 21 ˆ( )
N

θ θ−∑ where N is the number of 
replications.

Average length (AL) of A. 100(1 )%τ− approximate, Bootstrap-p 
and Bootstrap-p confidence intervals of ( , , )θ α γ λ= .
Coverage probability (CP) of B. 100(1 )%τ− confidence intervals 
of ( , , )θ α γ λ= , which is considered as the probability that the 
estimated confidence interval contains the true parameters. 
Moreover, the significance level is considered as 0.05τ = .

Moreover, for the SEM algorithm, we set the length of the 
sequence as 10000 with burn-in period as B= 1000, and the esti-
mates are obtained based on averaging the 9000 iterations. Based 
on MAP estimations, we consider the informative prior for α
and γ which they are obtained with equating the mean and the 
variance of ( )jα and ( );   1,..,j j Nγ =  to the mean and variance 
of the corresponding gamma density priors, respectively, as:
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By solving the above equations, we have:
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From the simulation results in Tables 2- 7, one could consider the 
following conclusions:

For fixed , and , the values of MSE’s of the MLEs, MPSs  and • 
MAPs increase, when the values of decrease.
When  increases, the MSE’s of the MLEs, MPSs  and MAPs  de-• 
crease, by keeping , and fixed. 
For fixed , and , the MSE’s of the MLEs, MPSs and MAPs in-• 
crease, when the values ofdecreases.

The increasing on , for other fixed values, decrease the values of • 
MSE’s of the MLEs, MPSs  and MAPs. 
For all the censoring schemes, it is observed that the MAP esti-• 
mates perform better than classical methods (MLEs and MPSs) 
for   and 
For fixed , and , the approximate/Bootstrap interval lengths in-• 
crease, when the value ofgets to be decreased.
For fixed , and , the approximate/Bootstrap interval lengths de-• 
crease, when the values ofincreases.
For fixed , and , the approximate/Bootstrap interval lengths in-• 
crease, when the value ofgets to be decreased.
For fixed , and , the approximate/Bootstrap interval lengths de-• 
crease, when the values ofincreases.
In most cases, the coverage probabilities (CPs) of all confidence • 
intervals approach to the desired level of 0.95.
The approximate interval lengths are shorter than the Bootstrap • 
interval lengths in most censoring schemes. Moreover, based on 
CP values, the approximate confidence intervals can be used as a 
better choice than other intervals. 
As for the Bootstrap method, there is no remarkable difference • 
between Bootstrap-p and Bootstrap-t approaches.
All obtained results can be considered to other censoring schemes. • 
For example the results can be specialized to Type I, Type II, Type 
I hybrid, Type II hybrid, generalized Type I hybrid and general-
ized Type II hybrid censoring schemes.

8. Conclusions
The accelerated life test is one of the important methods in the 

research of applied sciences. In this paper, statistical inferences for 
the parameters of the CSPALT model have been developed under 
UHCS. The main reason for considering this censoring scheme is that 
it provides at least a specific number of failures. Moreover, the UH 
censoring scheme contains other censoring schemes, such as, Type 
I, Type II, hybrid and generalized hybrid censoring schemes. Using 
the SEM algorithm and asymptotic normality properties, the MLEs 
and the approximate confidence intervals of the model parameters 
have been evaluated. The existence and uniqueness of the MLEs have 
been proved. The maximum product of spacing as another classical 
estimation method is proposed. The maximum a posteriori estima-
tions for model parameters and accelerated factor are also presented. 
Moreover, the Bootstrap-p and Bootstrap-t confidence intervals of the 
unknown parameters are constructed. A Monte Carlo simulation study 
has been employed to compare the performance of the proposed esti-
mates. We have compared the MLE, MPS and MAP estimators using 
the MSEs and the approximate, Bootstrap-p and Bootstrap-t confi-
dence intervals via the average interval length and coverage probabil-
ity. The results indicated that the MAP estimates perform better than 
the classical estimates. The flexibility of the unified hybrid censor-
ing scheme provides many different options for reliability studies and 
help to overcome many difficulties in engineering problems. Some 
extensions of this censoring scheme will be studied for future work, 
for instance, inference for stress-strength model and the design of cen-
soring schemes. These topics will be reported in the future.

ˆ
ˆ

ˆ

ˆ ˆ ˆ ˆ

ˆ

ˆ
ˆ

ˆ ˆ ˆ ˆ

ˆ
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Appendix A:
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For fixed ii) α , and γ , the MLE of  λ exist and unique. 
Moreover, we have:
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Table 2. The MSEs of unknown parameters based on ML method

n r
k T1

T2
MSEs of the MLE

α γ λ

40 20 10 0.2 0.5 0.70617 0.55483 1.05627

40 20 16 0.2 0.5 0.62528 0.53076 0.95940

40 30 10 0.2 0.5 0.47937 0.39633 0.80258

40 30 16 0.2 0.5 0.42593 0.38596 0.75437

40 20 10 0.7 0.5 0.66619 0.53361 1.03496

40 20 16 0.7 0.5 0.61114 0.51985 0.87941

40 30 10 0.7 0.5 0.46891 0.34118 0.71352

40 30 16 0.7 0.5 0.39392 0.32383 0.66616

40 20 10 0.2 1.0 0.61072 0.50826 0.89097

40 20 16 0.2 1.0 0.58885 0.47597 0.79541

40 30 10 0.2 1.0 0.44608 0.30975 0.63998

40 30 16 0.2 1.0 0.36482 0.29541 0.61157

Table 3. The MSEs of unknown parameters based on MPS method

n r
k T1

T2
MSEs of the MPS

α γ λ

40 20 10 0.2 0.5 0.59862 0.48073 0.79213

40 20 16 0.2 0.5 0.51914 0.46397 0.70773

40 30 10 0.2 0.5 0.43729 0.26880 0.68442

40 30 16 0.2 0.5 0.36864 0.23993 0.65280

40 20 10 0.7 0.5 0.52582 0.46741 0.72986

40 20 16 0.7 0.5 0.50243 0.45603 0.68633

40 30 10 0.7 0.5 0.42702 0.24514 0.65598

40 30 16 0.7 0.5 0.33747 0.20431 0.62734

40 20 10 0.2 1.0 0.50737 0.45373 0.69692

40 20 16 0.2 1.0 0.48604 0.44793 0.63985

40 30 10 0.2 1.0 0.41549 0.21607 0.59901

40 30 16 0.2 1.0 0.30482 0.16374 0.57346

Table 4. The MSEs of unknown parameters based on MAP estimator

n r
k T1

T2
MSEs of the MAP

α γ λ

40 20 10 0.2 0.5 0.39584 0.29943 0.52368

40 20 16 0.2 0.5 0.28940 0.28331 0.50911

40 30 10 0.2 0.5 0.26773 0.23432 0.46805

40 30 16 0.2 0.5 0.24724 0.21421 0.43287

40 20 10 0.7 0.5 0.29094 0.27643 0.50036

40 20 16 0.7 0.5 0.28328 0.25999 0.57995

40 30 10 0.7 0.5 0.25199 0.19854 0.43287

40 30 16 0.7 0.5 0.22909 0.17954 0.42730

40 20 10 0.2 1.0 0.28043 0.27764 0.40543

40 20 16 0.2 1.0 0.25998 0.24632 0.37851

40 30 10 0.2 1.0 0.27002 0.18232 0.36430

40 30 16 0.2 1.0 0.21160 0.12040 0.33429
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Table 5. The %95 approximate interval lengths and CPs of unknown parameters

n r
k T1 T2

%95 Approximate interval lengths
α γ λ

40 20 10 0.2 0.5 2.67432(92.67) 1.66743(93.25) 2.64067(91.84)
40 20 16 0.2 0.5 2.21342(94.41) 1.32685(94.77) 2.39852(93.89)

40 30 10 0.2 0.5 2.11062(93.75) 1.42182(93.42) 2.49532(93.66)
40 30 16 0.2 0.5 2.078234(96.00) 1.19743(96.08) 2.14764(95.18)

40 20 10 0.7 0.5 2.47832(93.62) 1.54004(94.87) 2.28995(94.62)
40 20 16 0.7 0.5 2.10943(93.65) 1.24808(94.84) 2.22895(94.44)

40 30 10 0.7 0.5 1.98639(94.16) 1.34065(94.28) 2.31650(92.76)
40 30 16 0.7 0.5 1.89964(95.69) 1.09543(94.87) 2.06886(96.32)

40 20 10 0.2 1.0 2.28964(95.09) 1.41063(94.73) 2.18639(95.34)
40 20 16 0.2 1.0 1.88609(94.78) 1.16283(95.59) 1.99755(96.00)

40 30 10 0.2 1.0 1.11073(95.18) 1.29995(95.14) 1.97535(94.94)
40 30 16 0.2 1.0 1.54387(94.83) 1.12025(95.12) 1.72640(95.19)

Table 6. The %95 Bootstrap-p interval lengths and CPs of unknown parameters

n r
k T1 T2

%95 Bootstrap interval lengths
α γ λ

40 20 10 0.2 0.5 2.75324(91.22) 1.73284(92.89) 2.74392(91.23)
40 20 16 0.2 0.5 2.28943(94.32) 1.38974(94.72) 2.45673(93.74)

40 30 10 0.2 0.5 2.16732(93.76) 1.49543(93.34) 2.54392(93.32)
40 30 16 0.2 0.5 2.11054(96.17) 1.29996(96.11) 2.28654(95.26)

40 20 10 0.7 0.5 2.59432(93.56) 1.58994(94.73) 2.52004(94.54)
40 20 16 0.7 0.5 2.18432(93.49) 1.29948(95.37) 2.36807(95.75)

40 30 10 0.7 0.5 2.06750(94.86) 1.37402(94.66) 2.338119(93.57)
40 30 16 0.7 0.5 1.93452(95.28) 1.12543(95.11) 2.12339(96.00)

40 20 10 0.2 1.0 2.43206(94.89) 1.49629(95.54) 2.29905(95.43)
40 20 16 0.2 1.0 1.94328(94.57) 1.22546(94.22) 2.20426(96.09)

40 30 10 0.2 1.0 1.45391(95.31) 1.30274(94.81) 2.18932(94.89)
40 30 16 0.2 1.0 1.42988(94.77) 1.15730(94.86) 1.91173(95.21)

Table 7. The %95 Bootstrap-t interval lengths and CPs of unknown parameters

n r
k T1 T2

%95 Bootstrap interval lengths
α γ λ

40 20 10 0.2 0.5 2.98547(90.05) 1.85435(92.56) 2.75667(91.18)
40 20 16 0.2 0.5 2.31462(94.19) 1.42043(94.69) 2.47845(93.68)

40 30 10 0.2 0.5 2.19875(92.97) 1.54270(93.17) 2.62564(92.89)
40 30 16 0.2 0.5 2.17643(96.54) 1.22457(96.18) 2.39875(95.53)

40 20 10 0.2 1.0 2.85433(92.72) 1.76548(94.21) 2.71097(93.99)
40 20 16 0.2 1.0 2.27854(93.35) 1.38875(95.66) 2.43527(96.15)

40 30 10 0.2 1.0 2.16578(94.71) 1.48954(94.86) 2.55673(93.69)
40 30 16 0.2 1.0 1.99769(94.68) 1.19753(95.38) 2.35268(94.11)

40 20 10 0.7 0.5 2.65738(95.37) 1.56995(94.23) 2.62348(95.89)
40 20 16 0.7 0.5 2.22314(95.43) 1.29965(94.10) 2.38056(93.96)

40 30 10 0.7 0.5 1.63146(95.56) 1.45357(94.75) 2.37976(95.57)
40 30 16 0.7 0.5 1.49654(95.87) 1.17654(94.89) 1.99895(94.55)


